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A Novel Orthorhombic Intermediate Phase
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The mechanism of the precursor dehydration route was re-
vealed for the synthesis of NTE c-ZrW; ¢Mo, 40s. The hydrate
precursor was dehydrated at 473 K and transformed to a NTE
cubic compound above 800 K. A novel intermediate phase o-
ZrW; ¢Moy 403 occurs between the temperature range of 573—
800 K. The XRD pattern of novel intermediate was refined with
the structural model of LT-ZrMo,0j3 by using Rietveld method.
The residuals are R,, =7.80% and R, = 5.79% . The space
group is Pmn2, and the lattice parameters are a = 0.5917 4
nm b=0.7273 4 nm ¢=0.9148 6 nm and Z =2.
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Negative thermal expansion NTE materials have re-
ceived considerable attention in recent years '® especially
the cubic phases ZrW,0g ¢-ZrW,0g3 and ZrMo,Og c-
ZrMo,0Og . These particular materials undergo isotropic
NTE behavior over a wide temperature range 0.3 K to
1050 K and 1378 K to 1530 K for ZrW,04' ? and 0 to 660
K for ZrMo,Og respectively.” ¢-ZrMo,Og possesses benefi-
cial intrinsic properties”™ over ZrW,0g such as lower den-
sity and lower phase transition temperature but its temper-
ature range for NTE is narrower than that of ZrW;0g. For
this reason solid solutions between ZrMo,0Og and ZrW,0g
system Zr W Mo ,0g should compensate the disadvan-
tages of the two end members.® Furthermore the stability
and the NTE critical temperature of ZrWMoOyg increase up
to 1473 K. 1°

Several preparation methods are used to synthesize c-
7rW,0g  ¢-ZrMo,0g and their solid solutions.'®'? The
strict preparation conditions'® make the pure phase c-Zr-
Mo,0g non-facile. The best synthetic route to obtain ¢-Zr-
Mo,05” 13 ™ and the solid solutions Zr W Mo ,0¢® ' 13
involve the sol-gel route to form precursors Zr Mo
W ,0; OH ;7 2H;0 then the precursor is dehydrated at
medium  temperatures. Mo-substituted zirconium

tungstates Zr W Mo ,0; OH 7 2H,0 have been pre-
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pared as crystalline samples in an analogous manner to that
of basic zirconium molybdate . '® The particular steps of the
sol-gel synthesis and heat-treatment are very important to
obtain pure phase products as discussed by Closmann'® and
Lind . '* Many attempts to simplify and shorten the synthesis
procedure for zirconium tungstate failed resulting in the
formation of multi-phase products. In our investigations
we found that the heat-treatment is not a simple procedure
for obtaining pure phase NTE materials. A novel or-
thorhombic intermediate formed during the dehydration
procedure .
Prior to the synthesis of the precursor ZrW; ¢Mogy 40+
OH » H;0 , H;0 content in the starting reagents
Na,W0O; 2H,0 A.R. Na,MoOy 2H,O A.R. and
ZrOCl; 8H,0 A.R.  was determined accurately by us-

ing gravimetric methods in order to prepare the starting so-
lutions with precise concentrations which are formed 0.5
mot L= for Zr** and 1.0 mot L™'for WO°* + Mo®*
respectively . The synthetic procedure followed the reported
method . '® The precipitated was dried at 378 K to form the
precursor ZrW; ¢Mog 407 OH 3 H,0 ,. The absence of
significant quantities of Zr W and Mo in the mother
liquor determined by using the ICP-AES JY VLTIMA
France  confirmed that the ratios of the metals in the pre-
cursor as well as in the title compound were Zr: W : Mo =
1:1.6:0.4.

The powder X-ray diffraction XRD of the hydrated
compound ZrW; ¢Moy 4O; OH 7
on a Rigaku Dmax-3A diffractometer Cu Ka radiation and
Ni filter . The structure of the hydrated precursor was re-
fined using powder XRD data collected in the range of
10°—120° 20 by the Rietveld method as embodied in
the GSAS program.'” ZtMo,07 OH 3 H,0 ,'® was used
as the starting structural model for ZrW; ¢Moy 407 OH 3

H,0 ;, was performed

H,0 , with the appropriate proportion of the Mo atoms
replaced by W atoms. The final refinement plot is dis-
played in Fig. 1 and the refinement results are R, =
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7.12% R,, =8.79% a =1.14245 5 nm ¢ = diffractometer MAC MXP21VAHF M21  Japan
1.24619 7 nm. The occupancy of W/Mo is 0.83 2 / equipped with high temperature furnace. Prior to data col-
0.17 2 . The coordinate of Mo/W site S. G. [4,cd lection the sample was annealed in nitrogen atmosphere at
16b x y z was refined to be 0.0167 2 0.1638 2 473 K for 1 h and then cooled to room temperature in N,

and the coordinate of Zr site 8a 0 0
-0.014 2 .

and 0.2223 3

z was refined to be 0 0
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Fig. 1 XRD patterns of the observed + and calculated -
plots and their difference lower for ZrW; ¢Mog 407
OH 3 H,0 ,. Bragg reflection positions are indicated
by tick marks.

The FT-IR spectrum was taken for hydrated precursor
using the Nicolet Avatar 360 instrument with the sample
incorporated in a KBr wafer. The IR pattern of ZrW ¢-
Mog 407 OH » H,0 ;, is similar to that of ZrMo,O7

OH » H,0 , ' in which the 3239 em~! and 1654
ecm ™! bands analogy with 3320 em ™! and 1665 ¢cm~! !©
were assigned to the vibrations of HO and the 3333
em ™! band analogy with 3340 cm~! 1 was assigned to
the vibrations of the OH group.

The heat treatment program to process the hydrated
precursor was determined by thermogravimetric analysis
using a TGA-DSC  Netch Sta 409C  heating the sample
from 303 to 973 K with a rate of 20 K/min and an Ar car-
rier gas. The TGA-DSC curves displayed in Fig. 2 indi-
cate that at 476 K a weight loss of 8.92% occurs that is
attributable to the weight loss of three H,O molecules from
caled 8.92% according to the reaction

OH 2 HzO 2= ZI‘WI_(,MOOAOg + 3H20

the precursor
ZI"W1 _6M00.4O7
g .

The DSC curve in Fig. 2 indicates that there is an in-
termediate phase 0-ZrW; ¢Moy 403 which exists between
573 K and 800 K during the conversion of the hydrated
precursor to the final cubic ¢-ZrW; ¢Mog 4Og. The only
exothermic peak in the DSC curve corresponds to the phase
transition of the intermediate phase of 0-ZrW; ¢Mog 403 to
cubic phase which was reported in reference.!!

The intermediate phase 0-ZrW; ¢Mog 4Og was ob-
tained upon annealing the hydrated compound at ca. 725
K in a muffle furnace for 24 h and then quenching the
sample in air. The sample was kept in a desiccator to pre-
vent absorption of moisture from the atmosphere. The XRD
data over the range of 3°—90° 20 for the novel interme-
0-2rW1 6 Mog 4 Og

diate phase were collected on the

atmosphere. The positions of the strong diffraction peaks
were searched automatically from 3° to 70° 20 using the
PowderX software.'® The data were corrected by line pairs
method!" and the pattern was indexed successfully using
the TREOR method®® contained within the PowderX pro-
gram. The best solution gives an orthorhombic cell with
lattice parameters a =0.9093 nm b6 =0.7219 nm ¢ =
0.5587 nm  V =0.3667 nm®> M 20 =13 F 20 =
15 . The density for this phase measured at 308 K by us-
ing Pyconometric method is 4.776 5 g/cm® and the con-
tent number Z in a unit cell was deduced to be 2.
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Fig. 2 TG-DSC curve of heating ZrW; ¢ Moy 4O+ OH »-

H,0 5 to ¢-ZrW; ¢Mog 40g.

Recently Evans and his coworkers®' reported a novel
type of structure of LT-ZrMo,Og. Both 0-ZrW; ¢Moj 4Og
and LT-ZrMo,Og have the similar cell volume as well as
the formula and the same Z. Therefore we characterized
the crystal structure of 0-ZrW; ¢Mogy 4Og by using LT-Zr-
Mo,0g as the structural model. The powder XRD pattern
was fitted using the Rietveld method. The starting model
which has the space group of Pmn2; was modified by re-
placing Mo atoms with W atoms randomly. The occupancy
of Mo crystal sites was adjusted according to the composi-
tion of the compound. For final cycles of the refinement
eight background terms five pseudo-Voigt peak shape pa-
rameters three microstrain broadening factors three lat-
tice parameters one scale factor and Zero point were re-
fined. Nine structural coordinates of atoms were refined
in which the coordinates of W and Mo in the same crystal
site and all O atoms were constrained respectively. A fi-
nal refinement factors of R, =7.80% and R, =5.79%
were obtained. The refinement results of structural param-
eters were ¢ =0.5917 4 nm b5=0.7273 4 nm ¢ =
0.9148 6 nm V =0.3936 7 nm’ and d, =4.655 g/
em?®. The fitted pattern from 3° to 90° 26 was displayed
in Fig. 3.
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We note that by application of the microstrain broad- References
ening correction terms the peak shapes were matched bet-
ter than before between observed and calculated patterns. 1 Mary T.A. Evans J.S. 0. Vogt T. Sleight A. W.

This is the evidence that the microstrain occurred within
the intermediate phase during the phase transition.
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Fig. 3 Final refinement result of XRD pattern of the 0-ZrW -
Moy 40Og refined by using LT-ZrMo,Og as the structural

model .

We have found that the preparation of the cubic NTE
material ZrW; ¢Mog 4Og by this method involves the forma-
tion of a novel orthorhombic intermediate phase. This is
different from the pure phase ¢-ZrW,0g by the same route.
ZI‘W207' OH 2

H,O ;, transforms to the cubic phase via the formation of

In that route the hydrated precursor

an amorphous phase . "> This method is suitable for prepar-
ing the NTE ¢-ZrW, ¢Mog 405 as well as ¢-ZrW, Mo, Og
and c¢-ZrMo,0g materials. The novel isomorph is different
from y-ZrW,0g> model obviously whose unit cell are a =
0.9067 nm b =2.07035 nm ¢ =0.8921 nm. Further
investigations showed that the orthorhombic ZrW; ¢Mog 4Og
intermediate phase is metastable phase as it absorbs mois-
ture from the air to form another orthorhombic phase

71W, ¢Mog 4Og: H,O which was denoted as §'-ZrW, ¢
Moy 405 phase .?
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